首页 > 国际新闻 > 正文

新机器学习算法助力防治传染病

原标题:新机器学习算法助力防治传染病

新华社伦敦11月4日电(记者张家伟)英国格拉斯哥大学发布一项新研究说,借助新的机器学习算法,科学家有望更高效从基因层面预测埃博拉和寨卡等病毒的天然宿主,从而采取措施预防这些病毒传播到人类身上。

不少致命病毒往往首先在野生动物和昆虫群体中大范围传播,随后才感染人类,并最终导致传染病疫情,因此尽早发现这些病毒的天然宿主对传染病防控来说非常重要。然而,要通过基因组序列来确认不同病毒的宿主往往会耗费很长时间,容易耽误防控工作。

格拉斯哥大学研究人员设计的机器学习算法,旨在把这个耗时过程大幅缩短。相关结果已刊登在美国《科学》杂志上。

他们通过分析超过500种病毒的基因组信息来训练这个算法,以便让它学会将病毒基因组中的特征与它们的动物源头相匹配,从而预测出哪种病毒来自哪个动物宿主,准确率让人满意。

报告作者之一、格拉斯哥大学的达尼埃尔·施特赖克尔说,如果能够利用基因组信息来预测病毒的天然生态,就可帮助人们快速找到病毒的动物宿主,也就能更早干预,预防病毒的传播。

团队目前正开发一个应用程序,可让全球科学家都能提交不同病毒的基因组序列信息,从而利用这个算法快速得出相关的动物宿主评估结果。

相关阅读:
黎巴嫩经济和贸易部总司长:进博会是个很棒的平台 为多国提供贸易机会 安倍与国际奥委会主席或将共赴福岛 为奥运造势